Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
FEMS Microbiol Ecol ; 99(6)2023 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-37197902

RESUMEN

The Arctic soil communities play a vital role in stabilizing and decomposing soil carbon, which affects the global carbon cycling. Studying the food web structure is critical for understanding biotic interactions and the functioning of these ecosystems. Here, we studied the trophic relationships of (microscopic) soil biota of two different Arctic spots in Ny-Ålesund, Svalbard, within a natural soil moisture gradient by combining DNA analysis with stable isotopes as trophic tracers. The results of our study suggested that the soil moisture strongly influenced the diversity of soil biota, with the wetter soil, having a higher organic matter content, hosting a more diverse community. Based on a Bayesian mixing model, the community of wet soil formed a more complex food web, in which bacterivorous and detritivorous pathways were important in supplying carbon and energy to the upper trophic levels. In contrast, the drier soil showed a less diverse community, lower trophic complexity, with the green food web (via unicellular green algae and gatherer organisms) playing a more important role in channelling energy to higher trophic levels. These findings are important to better understand the soil communities inhabiting the Arctic, and for predicting how the ecosystem will respond to the forthcoming changes in precipitation regimes.


Asunto(s)
Ecosistema , Suelo , Suelo/química , Teorema de Bayes , Tundra , Regiones Árticas , Carbono/metabolismo , Microbiología del Suelo
2.
Front Microbiol ; 13: 841175, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35464973

RESUMEN

The biological activity of marine vertebrates represents an input of nutrients for Antarctic terrestrial biota, with relevant consequences for the entire ecosystem. Even though microbial mats assemble most of the biological diversity of the non-marine Antarctica, the effects of the local macrofauna on these microecosystems remain understudied. Using 16S rRNA gene sequencing, 13C and 15N stable isotopes, and by characterizing the P and N-derived nutrient levels, we evaluated the effects of penguins and other marine vertebrates on four microbial mats located along the Antarctic Peninsula. Our results show that P concentrations, C/N and N/P ratios, and δ15N values of "penguin-impacted" microbial mats were significantly higher than values obtained for "macrofauna-free" sample. Nutrients derived from penguin colonies and other marine vertebrates altered the trophic interactions of communities within microbial mats, as well as the relative abundance and trophic position of meiofaunal groups. Twenty-nine bacterial families from eight different phyla significantly changed with the presence of penguins, with inorganic nitrogen (NH4 + and NO3 -) and δ15N appearing as key factors in driving bacterial community composition. An apparent change in richness, diversity, and dominance of prokaryotes was also related to penguin-derived nutrients, affecting N utilization strategies of microbial mats and relating oligotrophic systems to communities with a higher metabolic versatility. The interdisciplinary approach of this study makes these results advance our understanding of interactions and composition of communities inhabiting microbial mats from Antarctica, revealing how they are deeply associated with marine animals.

3.
Front Microbiol ; 10: 628, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30984148

RESUMEN

Microbial mats are complex communities that represent a large biomass fraction in non-marine Antarctic ecosystems. They confer structure to soils and constitute, by themselves, intricate microecosystems, where a great variety of microorganisms and microfauna contributes to the ecosystem functions. Although in recent years Antarctic microbial mats have been thoroughly investigated, trophic relationships within the communities remain unresolved. We therefore conducted a study of the trophic relationships of a microbial mat from Byers Peninsula, Antarctica, using DNA analysis and stable isotopes as trophic tracers. Our results suggested, based on a Bayesian mixing model, that at least four trophic levels are present within this microecosystem: primary producers (cyanobacteria and diatoms), primary consumers (rotifers and tardigrades), secondary consumers (nematodes) and decomposers (fungi). Nematodes would play a key role as top consumers of the community, connecting the two carbon inputs described into the system, as omnivores at the secondary trophic level. In addition, carbon pathways from primary trophic level to consumers take place quickly during the first 24 h after its incorporation in the primary producers, dispersing across all the trophic levels and reaching secondary consumers in less than 11 days. This suggests that, given the changing physical conditions and presumably short periods of activity, there is a fine temporal coupling among the organisms in the community, minimizing the redundancy in function performance among trophic levels.

4.
FEMS Microbiol Ecol ; 59(2): 377-85, 2007 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-17069622

RESUMEN

The community structure and physiological characteristics of three microbial mat communities in Byers Peninsula (Livingston Island, South Shetland Islands, Antarctica) were compared. One of the mats was located at the edge of a stream and was dominated by diatoms (with a thin basal layer of oscillatorian cyanobacteria), whereas the other two mats, located over moist soil and the bottom of a pond, respectively, were dominated by cyanobacteria throughout their vertical profiles. The predominant xanthophyll was fucoxanthin in the stream mat and myxoxanthophyll in the cyanobacteria-dominated mats. The sheath pigment scytonemin was absent in the stream mat but present in the soil and pond mats. The stream mat showed significantly lower delta13C and higher delta15N values than the other two mats. Consistent with the delta15N values, N2 fixation was negligible in the stream mat. The soil mat was the physiologically most active community. It showed rates of photosynthesis three times higher than in the other mats, and had the highest rates of ammonium uptake, nitrate uptake and N2 fixation. These observations underscore the taxonomic and physiological diversity of microbial mat communities in the maritime Antarctic region.


Asunto(s)
Cianobacterias/fisiología , Diatomeas/fisiología , Agua Dulce/microbiología , Sedimentos Geológicos/microbiología , Animales , Regiones Antárticas , Biomasa , Cianobacterias/crecimiento & desarrollo , Diatomeas/crecimiento & desarrollo , Ecosistema , Nitrógeno/metabolismo , Fijación del Nitrógeno , Fotosíntesis , Ríos/microbiología , Xantófilas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...